
HftrOOO-

bSTb-Cft-OO07

Distributed Computing Environment:
An Architecture for Supporting

Change?

J. Mansfield and J. Clothier

1®M29 m

;H£QEJEUELKLRELEASE

Approve« 101 pui>üc reieaasj
Diataouaan üslissutsd -i*

© Commonwealth of Australia

DUG QUALITY IKSPECTBD 1

DEPARTMENTOF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

UNCLASSIFIED

Distributed Computing Environment:
An Architecture for Supporting Change?

/. Mansfield and J. Clothier

Information Technology Division
Electronics and Surveillance Research Laboratory

DSTO-CR-0007

ABSTRACT

Distributed Computing Environment (DCE) has been in development for about five
years but has only been widely used in the last two years. It consists of a number of
services that have been selected from current proprietary distributed facilities and
integrated so that they work together. Together these services form an architecture for
distributed computing that enables users to carry out the new, cheaper operations
they require with the interoperability, reliability and security standards of mainframe
computers.

The facilities provided by DCE are often reviewed from either the perspective of
reliability or the perspective of interoperability. This paper reviews the facilities of
DCE from the perspective of change. An architecture is proposed which will support
the evolution of information systems.

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

DSTO-CR-0007

Published by

DSTO Electronics and Surveillance Research Laboratory
PO 1500
Salisbury. South Australia, Australia 5108

Telephone: (08) 259 7053
Fax: (08)259 5619

© Commonwealth of Australia 1995
AR-009-456
November 1995

APPROVED FOR PUBLIC RELEASE

DSTO-CR-0007

Distributed Computing Environment:
An Architecture for Supporting Change?

EXECUTIVE SUMMARY

Over the past twenty years information systems architectures have migrated away
from the centrally located mainframe in favour of geographically distributed services.
The disadvantages of a distributed system are poorer reliability, interoperability and
security. Distributed Computing Environment (DCE) is a software standard and
technology which provides a very high level of reliability, interoperability and security
within distributed information systems.

DCE has been in development for about five years but has only been widely used in
the last two years. It consists of a number of services that have been selected from
current proprietary facilities and integrated so that they work together. DCE is widely
recognised as a tool for providing interoperability between heterogenous computer
systems. It has the potential to provide computer systems which can more readily
adapt to change.

There are three basic elements of a computer program: the user interface, the business
rules and the data. As programs have increased in size and complexity, tools and
standards have emerged to support these three elements as separate entities.

If the separate elements of a computer program are executed on different computers
then elements must make requests to other elements for services. The recipient
computer executes the requested service and sends the response back to the requesting
computer. Computers requesting a service are known as clients. Computers providing
a service are known as servers. It is even possible for a computer to act as both a client
and a server. Mapping the three element view of a computer program to a
client/server architecture, such as DCE, requires a decision to be made on which
elements are clients and which elements are servers.

A three layer client/server architecture may have the business rules vested in the
client, with servers supporting the interface and database (function) services. The
clients are created by people who are familiar with the organisational or business
procedures whilst the expertise used to create the servers is that of technical experts.
By breaking the system down into parts the ramifications of change are minimised as
each part may be changed individually.

DSTO-CR-0007

The three layer client/server architecture becomes difficult to visualise when some
components act as both clients and as servers. However it can be viewed as three
concentric rings if the servers are combined into one layer and the physical world
becomes the outer ring. A concentric view highlight the potential of the three layer
architecture to support change. The concentric architecture can then be extended to
view the components as lots of little "machines" that have input and output and
process data. With this view they can be replicated and dynamically combined in
various ways to suit the needs of the user.

The essence of minimising the ramifications of change is that the granularity of the
component logic is very small. Although this leads to high overheads they may be
balanced, if not outweighed, by the benefits.

DSTO-CR-0007

Authors

John Mansfield
Information Technology Division

John Mansfield is a Senior Professional Officer with DSTO's
Information Technology Division. He is the leader of a section
responsible for research into command support system
architectures with particular interest in distributed systems. John
has thirty years experience in engineering and computer system
development for business, academe and government.

Jennie Clothier
Information Technology Division

Dr Jennie Clothier is a Senior Research Scientist with DSTO's
Information Technology Division. She is the leader of a section
responsible for researching and developing decision support
systems. Before joining DSTO in 1990 Jennie worked for the UK
Royal Navy, researching the application of information technology
to tactical command and control.

DSTO-CR-0007

DSTO-CR-0007

Contents

1. INTRODUCTION 1

2. BACKGROUND 3

2.1 The history of DCE 3

2.2 Basic services needed by distributed systems 3

3. A LOGICAL VIEW OF COMPUTER PROGRAMS 8

3.1 A three level architecture 8

3.2 Mapping computer programs to a distributed architecture 8

4. DCE AS A TECHNOLOGY TO SUPPORT CHANGE 10

4.1 A concentric ring architecture 10

4.2 Implementation 13

4.3 Pros and Cons of the Concentric Architecture 13

5. CONCLUSIONS 15

Acknowledgments 15

APPENDIX A 17

OVERVIEW OF THE OSF DISTRIBUTED COMPUTING
ENVIRONMENT(DCE) 17

APPENDIX B 21

DSTO EXPERIENCE WITH DCE 21

DSTO-CR-0007

DSTO-CR-0007

Glossary

CORBA
DBMS
DCE

DOS
GDA
IDL
Kerb er os
LAN
middleware

OS/2
POSIX

Stub

UUID
Unix

WAN
X.500

Common Object Request Broker Architecture.
DataBase Management System.
Open Software Foundation's Distributed Computing.
Environment. An example of middleware.
Microsoft Disk Operating System.
Global Directory Agent.
Interface Definition Language.
A security facility originating from MIT's Athena project.
Local Area Network.
Software that lies between the operating system and
application software. Its purpose is to facilitate communication
between systems.
An IBM operating system for Intel based computers.
Portable Operating Systems Interface, an IEEE standard.
originally intended to standardise Unix systems; now extended
to IBM MVS, DEC VMS, etc.
Program that interfaces the component to the communications
environment.
Universal unique identifier.
A non-proprietry operating system supported by many
hardware vendors.
Wide Area Network.
An OSI directory standard.

DSTO-CR-0007

DSTO-CR-0007

1. Introduction

The information systems technology of today is in a constant state of change due to the
pace of invention and innovation in the computer and communications industries.
Organisations are also in a state of change; either evolutionary change to meet the
needs of the market place by increments or revolutionary change by business re-
engineering. A major problem is the reconciliation of these two trends with the need
to continue to do business in a cost effective way.

None of these problems is new, what is new is the pace of change. Twenty years ago
users were frustrated by a huge backlog of software applications which they needed to
be developed on their mainframes. This problem has not inherently changed, even
though the pace at which applications are developed has increased enormously. The
problems of moving from one client / server based application to the next are the same
as moving from one mainframe application to the next. Whilst lessons may have been
learnt from the old application, and hopefully applied to the new application, most of
the investment in development, training, and procedures is thrown away.

What is needed is an architecture which will respond to change in an evolutionary
way, building on what has gone before. The requirements for this architecture are:

• the architecture must be simple in structure,

• the systems built within the architecture must be easy to change,

• there should be no wholesale recompilation when an application is changed - in
the ideal case a user makes the change.

Five to eight years ago the majority of computer systems were mainframes with
either dumb or smart terminals attached to them. These terminals could be local or
remote but they could only communicate with the mainframe. If a user required to
send a message to another user on a different machine the message was sent
mainframe to mainframe over a communications link with a modem at each end. The
major benefits of this system were easy access to large databases, high computing
power and a high level of security.

As workstations and PCs gained in power it became obvious that it would be simpler
and considerably cheaper for the majority of tasks to be processed within the local
machine. These machines still had to communicate with each other and with
mainframes to gain access to data held on other machines so the local area network
(LAN) was developed. The LAN provided high data rate information exchange
between local machines but still used the older mechanism for communication
between LANs. The wide area network (WAN) improved this communication
mechanism so that it appeared to the user that they were using one machine when in
fact they may have been using data, programs and processing power from a number of
machines. Today a workstation on a LAN/WAN provides many of the facilities of a
mainframe such as access to large databases and high computing power.

DSTO-CR-0007

The disadvantages of these distributed systems are that they are less reliable and
have poorer interoperability and security than a mainframe. To bring the
geographically distributed system back to the standards accepted by mainframe users
it is necessary to create a standard that lies between the applications the users wish to
run and the numerous operating systems on the various proprietary platforms. A
number of standards for this "middleware" have been proposed but the Open Software
Foundation's Distributed Computing Environment (DCE) is the only one that has been

widely adopted by the vendors of computing hardware.

DCE has been in development for about five years but has only been widely used in
the last two years. It consists of a number of services that have been selected from
current proprietary distributed facilities and integrated so that they work together.
Together these services form a philosophy for distributed computing that enables
users to carry out the new and cheaper operations they require with the

interoperability, reliability and security standards of mainframes.

The facilities provided by DCE are often reviewed from either the perspective of
reliability or the perspective of interoperability. This paper reviews the facilities of
DCE from the perspective of change. An architecture is proposed which will support

the evolution of information systems.

DSTO-CR-0007

2. Background

2.1 The history of DCE

Distributed computing is not new. Several thousands of sites around the world claim
to be running distributed computing services. However, these implementations have
few relevant standards, are based on proprietary solutions, and only offer partial
interoperability solutions, relying on the expertise of developers to patch together

systems.

The main challenges of any distributed system are summarised below.

• Interoperability, the ability of two systems to exchange information in a standard
form. This may extend to users of one platform running programs on another
platform and even applications being distributed across multiple computers.

• Consistent support for heterogenous computers from multiple vendors.

• Identification of distributed services and resources.

• Provision of good security.

• Support for end users, application developers and system administrators.

• High availability and good performance.

DCE is an interoperability standard for open distributed computing. It was
developed by the Open Software Foundation (OSF) which is a consortium of over 360
members including commercial, government, and university groups. OSF was
originally a technology integrator and distributor of Open Systems Technology with
over 300 employees worldwide. Its technology products have included an operating
system (OSF/1 Release 1.2) , a visual user interface and toolkit (Motif 1.2) and a
distributed computing environment (DCE 1.0.2A). Today, OSF no longer develops
products. Its main role is to oversee the development of OSF products by industry.

OSF issued its request for DCE technology in 1989. A year later, after several
submissions and reviews, an OSF DCE technology was selected. It then took another
two years for OSF to deliver version 1.0 of its DCE product. The first OSF DCE vendor
products began to emerge in late 1992 to mid 1993, but these versions suffered teething
problems and reliable OSF DCE implementations were not widely available until late

1993 to early 1994.

2.2 Basic services needed by distributed systems.

Computer programs or rather applications which execute on a single machine are
known as centrally run programs. In the 1970's and 1980's most programs were like
this. The program was executed on a central mainframe computer. A number of
terminals were attached to the mainframe and these acted as simple display devices
which carried out no processing themselves.

DSTO-CR-0007

Centrally executing mainframe programs are very efficient. Control overheads are
low when management of a program is centrally administered. However,
organisations that rely on such computer services are vulnerable because if the central
computer fails, all operations are lost. This recently happened to the Commonwealth
Bank where all automatic teller machines and electronic counter transactions were lost

for half a day due to the failure of a single computer.

One way of overcoming the vulnerability of centrally executing mainframe programs
is to run a duplicate machine. But mainframe computers are exceptionally expensive

and there is no guarantee that both systems will not fail at the same time.

The alternative to central execution is distributed execution. Distributed execution is
when the program or application is executed using a number of different computers.
In these cases the application must make a request to another computer for a service.
The recipient computer then executes the requested service and sends the response
back to the requesting computer. Computers requesting a service are known as clients.
Computers providing a service are known as servers. It is possible for a computer to

act as both a client and a server (see Figure 1).

Server

Client request Client request

Server response Server response

Figure 1. A very simple client/server architecture. A single application uses the services of
several computers. This requires the part of the application hosted bij the client computer to
request services from the another part of the application hosted on the server computer.

As soon as an application becomes distributed then there are a number of facilities
which become critical to its smooth execution.. Some of these facilities are necessary to
give the illusion that the application is running on a single machine, others such as
time and security servers perform functions that are unnecessary when the application
was running is running on a single machine. Figure 2 provides an illustration of the
facilities provided by the Open Software Foundation's DCE. Each facility is briefly

described below.

• Time. In a distributed computing environment it is important that the computer
clocks are synchronised, otherwise an application may show unpredictable
behaviour. Without this synchronism there could be chaos as locally each

DSTO-CR-0007

machine may have a different system time and some machines may even be in
different time zones. For the purposes of file updating, transaction processing,
security, backing up, compilation, etc. it is crucial that all machines have the

same reference time.

Naming. When multiple computers are used it is important to provide a
universally consistent way of naming programs and people. Inconsistent naming
could lead to either the wrong service being provided or a clash of services.

Remote Procedure Calls. Procedure calls take on new meaning in a distributed
computing environment. A computer program normally consists of a set of
procedures which execute sequentially. A procedure may request that a file be
opened and data read from it. However, it is always assumed that the file and
the procedure for opening it exist on the same machine. When the file and the
procedure for opening that file exist on another (remote) machine, then the
requesting program must make a call to that remote procedure. This is known as
a remote procedure call and involves knowledge of the communication systems
used to transmit the data.

Threads. A program which makes procedure calls to other computers obviously
has the potential to slow down the rate at which an application runs whilst it
waits for a response from the other computer. Threads are a popular way of
improving application performance. They introduce parallelism and have been
used in various versions of UNIX and OS/2 for some years. A procedure may be
duplicated within the program to form threads. These threads execute
independently but share static and external data. A server program using
threads could handle multiple client requests simultaneously and thus minimise
delays within the system.

File System. Different computers have different file systems. For example, an
MSDOS file system is very different to a UNIX file system. To overcome this
problem in a distributed environment there is a file service that gives the
appearance of a single file system which incorporates all the files available within
the system. So users and computers can use this service to easily share files and
the information in those files.

DSTO-CR-0007

Distributed Applications

o
00

Distributed File Service

Time
Service

Directory

Services

Remote Procedure Calls

0)

60

Threads

Operating System and Transport Services

Figure 2. The services provided by OSF's DCE are represented by shaded boxes. They
include: a Distributed Tile Service, a Time Service, Directory Services, Remote Procedure

Calls, Threads, Security and Administration.

• Security. Protection of computer resources, such as files and applications, from
unauthorised access requires a user to be regarded as authentic and to have the
necessary authority. This usually requires a user to enter a password as proof
that he or she is who they claim to be. Access to files is then controlled through
permissions or privileges associated with each resource. When the number of
users is small, a single computer may manage all of the passwords and
permission functions. For a distributed computer system, there may be a very
large number of users accessing an even larger number of resources. It would be
impractical to maintain every user's security information on every computer in
the system. The answer lies in the provision of a single centralised database
which serves security information.

• Management. A distributed computer system has a much higher management
and administration overhead than a centralised computer system. Tools for
administrative support which automate some of these routine tasks help to
reduce the management burden of distributed systems. For administrative and
operational purposes distributed services are collated into a basic unit which is
referred to under DCE as a cell. A cell is a group of users, systems and resources
that typically have a common purpose and share common services. At a
minimum, a cell consists of a directory (name) service, a security service and a
time service. Usually a cell consists of nodes in a common geographic area, but
geography does not necessarily determine its boundaries. Boundaries of a cell, in
terms of the number of systems and users, are influenced by four basic
considerations: purpose, administration, security and overhead. Figure 3 shows
the services provided to a cell in a distributed system.

DSTO-CR-0007

File Server

DCE User

DCE User

Time Server

Security Server

DCE User

DCE
Administrator

DCE User
DCE User

Network

Name Server

DCE User

DCE User

DCE User

Figure 3. A DCE cell is an independent set of clients and servers, managed as a group. Cells
can be combined to form multi cell systems.

A more detailed description of DCE's services is given in Appendix A. Appendix B
provides a short description of the Defence Science and Technology Organisation's
experience in establishing a DCE cell.

DSTO-CR-0007

3. A Logical View of Computer Programs

3.1 A three level architecture

A computer program has three basic elements. There is the data, the logic and the user
interface. Simple programs combine all three elements. For example, a program
normally declares the acceptable data types, states the procedures to be executed (and
the sequence in which they are to run) and writes output or takes input from some

other device, such as a terminal (see Figure 4).

As programs have grown in size and complexity, attempts have been made to
provide tools dedicated to the provision of data, the logic of the program and the user
interface. For example, databases have been designed to store data which exists
beyond the life of the program's execution, and user interface builders have been

developed to allow the easy development of panes, menus and windows.

<D o
CJ bü

O

03
t/) ■*—»

G c/3 c3
h—1

a Q
<D

o PQ

User Interface

Business Logic

Data

UI UI UI

BL BL BL

D D D

Figure 4. There are three basic elements of a computer program: the user interface (UI), the
business logic (BL) and the data (D). As programs have increased in size and complexity, tools
and standards have emerged to support these three elements as separate entities. It is possible

that a number of highly networked elements may constitute an application.

The three level architecture illustrates the state of the art. More flexibility could be
achieved if the elements of the current three level architecture were broken down into

discrete components.

3.2 Mapping computer programs to a distributed architecture

Mapping the three layer logical view of a computer program to a client/server
architecture, such as DCE, requires a decision to be made on which elements are
clients and which elements are servers. A three layer mapping is given in Figure 5.

• The top layer is the interface to the user and to other systems; it utilises
specialised servers, such as Motif, to provide an attractive and useful interface to

the user.

• The middle layer contains the organisational logic. It consists of business rules
grouped into modules called clients. Clients accept information from the
interface servers, process it and return the information to the interface servers.

• The bottom layer provides functions such as data storage and printing that are
common to many clients and hence are extracted into function servers.

DSTO-CR-0007

The physical world

The physical world

Figure 5. A three layer client/server architecture

The benefits of the three layer architecture are two fold:

l.The clients are created by people who are familiar with the organisational or
business procedures whilst the expertise used to create the servers is that of technical
experts; database designers, human computer interface designers, and windows
programmers. The servers can be used by any client that needs them and, indeed, the
clients can become "servers" to other clients if they contain commonly used
procedures. The purpose of an information technology system is to aid the
organisation to become more efficient and more effective. By applying particular
expertise only where it is needed the system becomes more flexible and quicker and
cheaper to implement.

2. By breaking the system down into parts the effect of making a change is minimised
as only the part, or parts, involved need be changed. If the database manager is
changed from one vendor to another, the only changes required are in the database
access server. Provided the database interface remains unchanged the clients, and the
users, can remain unaware of the change.

DSTO-CR-0007

4. DCE as a Technology to Support Change

"Notice we didn't mention rewriting the application: redesigning and rewriting are
constant. Why? Because the group of somewhat interdependent clients and servers

across the network probably won't be thrown away at the same time "

From Understanding DCE
Rosenberry, Kenney & Fisher 1992

DCE is widely recognised as a tool for providing interoperability between
heterogenous computer systems. It also has the potential to provide computer systems
which can more readily adapt to change. These changes may be the transition of an
application from one computer to many or perhaps changes within an application's
clients or servers. A change in an user interface server, in the business rules in a client

or replacement of a DBMS server.

4.1 A concentric ring architecture

The three layer client/server architecture becomes difficult to visualise when some
components act as both clients and as servers. However it can be viewed as three
concentric rings if the servers are combined into one layer and the physical world
becomes the outer ring. A concentric view highlights the potential of the three layer
architecture to support change. Figure 6 shows a concentric representation.

In the outer ring lies the physical world, in the middle ring the service providers and
the centre the business rules. It can now be seen that the clients and servers are each a
special case of a software component and the three layer architecture breaks down into
a multi-level architecture. Thus a better view may be a single ring (Figure 7), inside
the ring is an abstract structure and outside the ring is the physical world. In
accordance with current terminology the program for the business rules will be called
a client and the program for the service provision will be called a server. However an
individual server may act as a client to another server so they will not be clients and
servers in the currently accepted meaning of these words each is a component in a
distributed application. Each component can be designed to act as both a client and a
server and each abstract client or server can hold within it a hierarchy of clients and
servers.This concept is similar to a single program that calls procedures or functions
which in turn call other procedures or functions. It differs in that each component is a
separately compiled unit with a known interface. The glue that connects them one
with another is a procedure call that is not limited to the functions within a component
but can use procedures that reside elsewhere on the same machine or even on a

different machine.

10

DSTO-CR-0007

A Server

O Client

Ä Client and server

Data storage

Figure 6. A three ring architecture.

If a change is made within a component then that component needs to be recompiled
but no other because the interface is maintained. So if a bug is fixed, a new faster
algorithm implemented or even a different vendor's DBMS is introduced only that
component need be recompiled.

This architecture also permits customisation of a system by including particular
versions of a facility; for example the interface a wordprocessor component uses to call
a spelling checker component remains the same whether it calls an English or a
Spanish version. Applications, such as wordprocessors, can be constructed from a
small, kernel client component and many subordinate components. If a new facility is
required, a new component is created to provide the facility and the client component
is modified to call the new component; in this case both the modified client component
and the new server component need to be recompiled but any subordinate
components called by either the client or the "server" component need not be changed.
The communication through a single interface enforces the good software engineering
practices of separation and encapsulation and minimises the problems of errors
occurring when software is changed.

The concentric architecture also provides the potential for the construction of high
availability systems. Where server components are replicated, clients can be
constructed to respond to communications or server failure by seeking out a replica
server and connecting to the replica. Experiments have shown that it is possible to
continue processing in the event of a failure with only a short delay and without
intervention by user or system administrator.

11

DSTO-CR-0007

The physical world

The component world \^ Peripheral devices

Data storag Screen

Keyboard

Figure 7 A single ring architecture.

The single ring architecture diagram (Figure 7) depicts a static view of the dynamic
state of the system; over a period of time a client will connect to a server then
disconnect, then another client will connect to the same server. So any view will be a
snapshot of a constantly changing system. The clients and servers need not be on the
same host machine, indeed they may be separated by thousands of kilometres and be
running on different vendor's machines. The dynamic view also depicts the situation
where many clients may be attached to a single server and where there are several
invocations of a single server or a single client. When introducing a new component
into the system a mechanism called a trader or broker may be consulted to discover
where the resources needed by the component are located; the trader keeps track of
what procedures are on offer and where they may be obtained.

Thus we have lots of little "machines" that have input and output and process data.
They can be replicated and dynamically combined in various ways to suit the needs of
the user. In a sense they are all servers and when combined each do their little bit for
the structure. The only specialist machines are those that communicate with the
physical world. The structure's closest analogy is probably an organism, in that it has
the ability to evolve; growing, changing and, partly, dying as needs change.

The essence of minimising the ramifications of change is that the granularity of the
component is very small. The overhead will be high - but the benefits will also be

high.

12

DSTO-CR-0007

4.2 Implementation

In order to create a practical implementation of such a system a standard is required
that provides a number of basic facilities. The most important is an open remote
procedure call facility that operates across any vendor's host machine and operating
system. Another is an interface definition language (IDL) which will permit
developers of components to specify the interface to a specific component so that
others can use that information in designing calls to that component. An IDL complier
is also required so that the interface definition can be machine readable. The third
essential requirement is the ability of one "server" to handle several "client" calls
simultaneously; this needs a mechanism within the server to keep each client's
activities separate from the others. Candidates for this standard are the Open Software
Foundation's Distributed Computing Environment (DCE) and the Object Management
Group's Common Object Request Broker Architecture (CORBA). At the time of
writing DCE has been implemented by all the major hardware vendors and a few
independent software vendors whereas the availability of CORBA is more limited.
Moreover, as CORBA does not define an implementation standard, interoperability is
not guaranteed. DCE is therefore currently the most obvious choice for an
implementation standard.

4.3 Pros and Cons of the Concentric Architecture

The architecture described has some disadvantages but provides many advantages in a

changing world.

Disadvantages:

• Separation of the software into independent components incurs an overhead
every time the component is invoked.

• Communication bandwidth limits the speed of the system.

Advantages:

• Proven systems need not be discarded as requirements change, saving time and
money.

• High availability systems can be constructed.

• The location of computing resources are transparent to the user.

• Systems are scalable, as requirements change more or less components are
provided. These components can run on any machine, large or small, or on
multiple machines. When DCE is used the components can run on any of the
major vendor's operating systems.

• Systems may be physically spread over a wide geographic area but are logically
local.

• When DCE is used privacy and security can be implemented network wide.

• Applications can be customised.

• Error correction and code modification can be carried out without disruption.

13

DSTO-CR-0007

It would seem that the advantages of the single ring architecture outweigh the
disadvantages, particularly when it is viewed against the proprietary two and three

layer architectures.

14

DSTO-CR-0007

5. Conclusions

Over the past twenty years information systems architectures have migrated away
from the centrally located mainframe in favour of geographically distributed services.
The disadvantages of a distributed system are poorer reliability, interoperability and
security. Distributed Computing Environment (DCE) is a software standard and
technology which provides a very high level of reliability, interoperability and security
within distributed information systems.

DCE has been in development for about five years but has only been widely used in
the last two years. It consists of a number of services that have been selected from
current proprietary facilities and integrated so that they work together. DCE is widely
recognised as a tool for providing interoperability between heterogenous computer
systems. It also has the potential to provide computer systems which can more readily
adapt to change.

There are three basic elements of a computer program: the user interface, the business
logic and the data . As programs have increased in size and complexity, tools and
standards have emerged to support these three elements as separate entities. Mapping
the logical view of a computer program to a client/server architecture, such as DCE,
requires a decision to be made on which elements are clients and which elements are

servers.

A three layer client/ server architecture can have the business rules vested in the client
and with servers supporting the interface and function (usually database) services.
The clients are created by people who are familiar with the organisational or business
procedures whilst the expertise used to create the servers is that of technical experts.
By breaking the system down into parts the ramifications of change are minimised as
each part may be changed individually.

The three layer client/server architecture can be viewed as three concentric rings. A
concentric view highlights the potential of the three layer architecture to support
change. In the outer ring lies the physical world, in the middle ring the service
providers and the centre the business rules. The concentric architecture can be viewed
as lots of little "machines" that have input and output and process data. They can be
replicated and dynamically combined in various ways to suit the needs of the user.
This view leads to a final view of the architecture as a single ring.

The essence of minimising the ramifications of change is that the granularity of the
component is very small. Although this leads to high overheads they may be far
outweighed by the benefits.

Acknowledgments

The work reported in this paper has been supported in part by the Distributed
Systems Technology Cooperative Research Centre.

15

DSTO-CR-0007

16

DSTO-CR-0007

Appendix A

Overview of the OSF Distributed Computing
Environment(DCE)

The Open Software Foundation is a not for profit organisation that uses consensus to
create a standards for various vendor independent concepts, Motif and DCE are two of
these standards. The DCE standard provides facilities to build open, distributed

computer systems. The key parts of the standard are:

• Remote procedure calls.

Remote procedure calls permit the application programmer to use functions from
separately compiled programs, that may be running on a different platform many
kilometres away. These procedures are called in the same manner as procedures local
to the program and DCE handles all the communication problems transparently to the
programmer. The local program is called the client and the remote program is called a
server. A server may access a database or carry out a complex parallel computation
but all the application programmer needs to know is the name of the procedure and its

parameters (see Figure Al).

Calling
Program A-J i i

i Remote
1* Procedure

RPC Interface RPC Interface

Client Stub B J G E Server Stub

RPC
Runtime Q I It

RPC
£) Runtime

Client Server
Network

Figure Al. The path taken by a remote procedure call from the calling program to the remote
procedure and back again.

• An interface definition language.

The interface definition language allows the interface to each server to be defined in a
standard way so that any client may use its services. A programmer writes the
interface definition file using the interface definition language. An interface definition
language compiler produces header files that support the data types in the interface
definition and generates the client and server stub files.

17

DSTO-CR-0007

A universal unique identifier (UUID) is used to distinguish the interface. A UUID is

produced using a UUID generator utility (see Figure A2).

Interface
Definition

in IDL

Defines RPC Interface

UUID
Generator

Client Stub

IDL
Compiler -► Header File

Server Stub

Figure A2. Defining the interface to each server requires a unique identifier to be generated.

• POSIX standard threads.

Servers may need to process the requirements of several clients at one time without the
needs of one being entangled with another. As the server is a single program it needs
a mechanism to run several processing streams simultaneously; this mechanism is
called threads (see Figure A3). The version of threads adopted by DCE is that from the

POSIX standard.

Process Process

Adc [ress

H
>-i
CD
SO

Space
Common

Address Spac.

Thread 1
pthread_create()

Thread 2
3thread_create()

pthread_exit()

pthreadjoin(l)

pthread_exit()

I I Executing Waiting

Figure A3. Threads permit servers to respond to multiple clients.

• A local cell directory service.

DCE connects together a logical group of machines into a cell. The machines in a cell
may be few or thousands, they can all be local or they can be spread around the world.
However, all machines in a cell share the same file system so all the users of the
machines in the cell can see the same files. Of course, if the file the user wants is on a
machine on the other side of the world it will take longer to access it than if it were
local but the user need never know where it physically resides. This access is
governed only by the user's authorised access rights, (see para, on security below)

18

DSTO-CR-0007

• Access to the global computing environment via X.500 or the Domain Name
Service.

Whilst most of a user's work will be done within the cell it is natural that occasionally
there will be the need to access machines outside the cell. A user can reach any
machine outside the cell via the X.500 directory standard or via the Domain Name
Service. If the required machine is in another DCE cell the user can become a principal
within that cell with whatever access rights granted by the cell administrator. A Global
Directory Agent (GDA) makes cell interaction possible. When a cell directory service
determines that a name is not in its own cell, it passes the name to the GDA. The GDA
searches the appropriate global naming environment for more information about the

name.

Global
Directory
Service

GDA GDA

Cell
Directory
Service

Cell
Directory
Service

Figure A4. Access to machines outside of a cell is gained through a global directory agent
(GDA).

• A distributed time service.

DCE provides a distributed time service to synchronise the time on the machines
within a cell. Without this synchronism there could be chaos as locally each machine
may have a different system time and some machines may even be in different time
zones. For the purposes of security, file updating, transaction processing, backing up,
compilation, etc. it is crucial that all machines in a cell have the same reference time.

• A security service.

DCE provides a number of facilities to provide security on machines with no security
such as MS Windows and OS/2 machines and enhance security on Unix machines. It
uses an enhanced form of Kerberos to authenticate a user on login and when they
access restricted programs. It also gives six levels of access control to partition data

and databases.

• System wide administration tools.

Administration of distributed systems, particularly those spread over a wide area, is
complex and difficult. DCE provides a set of cell wide administration tools to ease the

task.

19

DSTO-CR-0007

20

DSTO-CR-0007

Appendix B

DSTO experience with DCE

DSTO has conducted an experiment that demonstrates it is possible to create a cell
composed of six heterogenous machines with some in Salisbury, South Australia and
some in Canberra. The machines were a H-P E55, two Digital Alpha 3000, a Sun
Sparestation, two OS/2 PCs and a Windows 3.11 PC(client only). DCE clients running
on one machine were able to access DCE servers running on any of the other machines.
Thus demonstrating interoperability.

As part of this experiment the client and server programs were ported from machine
to machine quickly and without major problems. The exception to the pattern was the
OS/2 machine where a little more effort was required as the signal mechanisms were
different to that for Unix. This demonstrated the portability of DCE code across
proprietary platforms.

A second experiment was conducted to test the potential survivability of DCE
systems. A DCE database server was replicated on several machines. A client was
written to access the server. In addition to the application code, whenever a call to the
current server was made the client checked if the call had succeeded or failed. If the
call failed the client asked the local name server for the location of a replica of the
server, bound itself to the new server and continued processing.

In the experiment several instances of the client were set running and initially each
one accessed a server local to it. A server process was killed and it was observed that
the client formerly attached to that server recommenced processing in a matter of
seconds.

Host machine 1 Host machine 2

Client 1

Name Server

[Server 1A i

Client 2

Client 1 accesses Server 1A on its local machine and Client 2
accesses Server IB, a replica of Server 1A, on its local machine.

Figure Bl.
21

DSTO-CR-0007

Host m achine 1 Host machine 2

Client 1

Name Server

X
Server 1A

Client 2

(ii.vit:**? V- Server IB

Client 1 loses contact with Server 1A and requests the location of
a replica from the Name Server. It is given the location of
Server IB.

Figure B2.

Where the only available server was geographically distant a poorer response was
noted but the client application was still able to continue processing without assistance

from a systems administrator

Host machine 1

Client 1

1
Name Server

Server 1A

fwati-omSQI.")

Host machine 2

Client 2

Server IB

Client 1 accesses Server IB on a remote machine and Client 2
continues to accesses Server IB on its local machine.

Figure B3.

This demonstrated that it is possible to write DCE based applications that are fault
tolerant, in that they can lose connection with their primary server and still continue
processing. It should be noted that whilst the database servers were replicated and the

information was replicated the DBMSs were different.

22

DSTO-CR-0007

Distributed Computing Environment:
An Architecture for Supporting Change?

J. Mansfield and J. Clothier

(DSTO-CR-0007)

DISTRIBUTION LIST

Defence Science and Technology Organisation

Chief Defence Scientist and members of the)

DSTO Central Office Executive)

Counsellor, Defence Science, London

Counsellor, Defence Science, Washington

Senior Defence Scientific Adviser)

Scientific Adviser - POLCOM)

Director, Aeronautical & Maritime Research Laboratory

Electronics and Surveillance Research Laboratory

Chief Information Technology Division

Research Leader Command & Control and Intelligence Systems

Research Leader Command, Control and Communications

Research Leader Military Computing Systems

Head Command Support Systems Group

Head Information Management Group

Manager Human Computer Interaction Laboratory

Executive Officer, Information Technology Division

Head Software Engineering Group

Head, Trusted Computer Systems Group

Head, Advanced Computer Capabilities Group

Head, Command Support Systems Group

Head, Intelligence Systems Group

Head, Systems Simulation and Assessment Group

Head, Exercise Analysis Group

Head, C3I Systems Engineering Group

Head, Computer Systems Architecture Group

John Mansfield, (Author) CSSG, ITD

Dr Jennie Clothier

Publications and Publicity Officer, ITD

Number of Copies

1 shared copy

for circulation

(Document Control sheet)

(Document Control sheet)

1 shared copy

1

1

1

1

1

1

(Document Control sheet

(Document Control sheet

(Document Control sheet

(Document Control sheet

(Document Control sheet

(Document Control sheet

(Document Control sheet

(Document Control sheet

(Document Control sheet

(Document Control sheet

(Document Control sheet

1

1

1

23

DSTO-CR-0007

Strategy and Intelligence

Assistant Secretary Scientific Analysis

Principal Research Scientist (R&D)

Assistant Secretary, Information Technology
HQADF

Director General, Force Development (JOINT)

Director General, Force Development (SEA)

Director General, Force Development (LAND)

Director General, Force Development (AIR)

Director, Operational Information Systems

DD-EW
Navy

Navy Scientific Adviser (NSA)
Army

Scientific Adviser, Army (SA-A)

Project Director, AUSTACSS
Air Force

Air Force Scientific Adviser (AFSA)

CO, Electronic Warfare SQN
ACQUISITION AND LOGISTICS PROGRAM

Director General, Information Management

Project Director, ADFDIS

Project Director, JP2030

Project Director, AUSTACCS
Libraries and Information Services

Defence Central Library - Technical Reports Centre

Manager Document Exchange Centre (MDEC) (for retention)

Additional copies which are to be sent through MDEC

DIS for distribution:

National Technical Information Centre. United States

Defence Research Information Centre, United Kingdom

Director Scientific Information Services, Canada

Ministry of Defence, New Zealand

National Library of Australia

Defence Science and Technology Organisation Salisbury, Research Library

Library Defence Signals Directorate Canberra

AGPS

British Library Document Supply Centre

Parliamentary Library of South Australia

The State Library of South Australia

Spares

Defence Science and Technology Organisation Salisbury, Research Library

24

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF

DOCUMENT)
N/A

2. TITLE

Distributed Computing Environment:
An Architecture for Supporting Change?

4. AUTHOR(S)

J. Mansfield and J. Clothier

6a. DSTO NUMBER

DSTO-CR-0007

8. FILE NUMBER
N9505/10/4

6b. AR NUMBER

AR-009-456

9. TASK NUMBER
ADL 94/150

13. DOWNGRADING/DELIMITING INSTRUCTIONS
N/A

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

Document (U)
Title (U)
Abstract (U)

5. CORPORATE AUTHOR
Electronics and Surveillance Research Laboratory

PO Box 1500
Salisbury SA 5108

6c. TYPE OF REPORT

Client Report

7. DOCUMENT DATE

November 1995

10. TASK SPONSOR
DGFD (Joint)

11. NO. OF PAGES
34

12. NO. OF
REFERENCES
N/A

14. RELEASE AUTHORITY
Chief, Information Technology Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE,
DEFT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600 -

16. DELIBERATE ANNOUNCEMENT

No limitation

17. CASUAL ANNOUNCEMENT

Yes
18. DEFTEST DESCRIPTORS

Distributed Computing Environment
Computer systems
Computer programs
Client/server computing

19. ABSTRACT

Distributed Computing Environment (DCE) has been in development for about five years but has only
been widely used in the last two years. It consists of a number of services that have been selected from
current proprietary distributed facilities and integrated so that they work together. Together these
services form an architecture for distributed computing that enables users to carry out the new, cheaper
operations they require with the interoperability, reliability and security standards of mainframe
computers.

The facilities provided by DCE are often reviewed from either the perspective of reliability or the
perspective of interoperability. This paper reviews the facilities of DCE from the perspective of change.
An architecture is proposed which will support the evolution of information systems.

Page classification: UNCLASSIFIED

